skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Transtrum, Mark_K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study proposes a novel flexible hybrid state estimation (SE) algorithm when a realistic communication system with its irregularities is taken into account. This system is modelled by the Network Simulator 2 software tool, which is also used to calculate communication delays and packet drop probabilities. Within this setup, the system observability can be predicted, and the proposed SE can decide between using the static SE (SSE) or the discrete Kalman filter plus SSE‐based measurements and time alignment (Forecasting‐aided SE). Flexible hybrid SE (FHSE) incorporates both phasor measurement units and supervisory control and data acquisition‐based measurements, with different time stamps. The proposed FHSE with detailed modelling of the communication system is motivated by: (i) well‐known issues in SSE (time alignment of the measurements, frequent un‐observability for fixed SE time stamps etc.); and (ii) the need to model a realistic communication system (calculated communication delays and packet drop probabilities are a part of the proposed FHSE). Application of the proposed algorithm is illustrated for examples with time‐varying bus load/generation on two IEEE test cases: 14‐bus and 300‐bus. 
    more » « less
  2. Abstract Superconducting radio‐frequency (SRF) resonators are critical components for particle accelerator applications, such as free‐electron lasers, and for emerging technologies in quantum computing. Developing advanced materials and their deposition processes to produce RF superconductors that yield nΩ surface resistances is a key metric for the wider adoption of SRF technology. Here, ZrNb(CO) RF superconducting films with high critical temperatures (Tc) achieved for the first time under ambient pressure are reported. The attainment of aTcnear the theoretical limit for this material without applied pressure is promising for its use in practical applications. A range ofTc, likely arising from Zr doping variation, may allow a tunable superconducting coherence length that lowers the sensitivity to material defects when an ultra‐low surface resistance is required. The ZrNb(CO) films are synthesized using a low‐temperature (100 – 200 °C) electrochemical recipe combined with thermal annealing. The phase transformation as a function of annealing temperature and time is optimized by the evaporated Zr‐Nb diffusion couples. Through phase control, one avoids hexagonal Zr phases that are equilibrium‐stable but degradeTc. X‐ray and electron diffraction combined with photoelectron spectroscopy reveal a system containing cubic β‐ZrNb mixed with rocksalt NbC and low‐dielectric‐loss ZrO2. Proof‐of‐concept RF performance of ZrNb(CO) on an SRF sample test system is demonstrated. BCS resistance trends lower than reference Nb, while quench fields occur at approximately 35 mT. The results demonstrate the potential of ZrNb(CO) thin films for particle accelerators and other SRF applications. 
    more » « less